

Simulation Based Process Analysis And Optimization For A Pre-Surgical Screening Clinic

© Philip M. Troy, Ph.D., 2010

DrPhil@PhilTroy.com

Presentation Outline

- What I am doing in the PSS and elsewhere in the hospital
- What you might want to know about simulating hospital processes:
 - Why simulate hospital processes
 - What Monte Carlo Simulation is
 - What the critical components/factors needed for successful simulation studies are

Disclosure

- Most of the work discussed in this presentation has been supported by the:
 - Sir Mortimer B. Davis Jewish General Hospital
 - The Jewish General Hospital Foundation
- I am the sole employee of Les Entreprises TROYWARE

Why Simulate The PSS (Or Any Other Hospital Process)?

DrPhil@PhilTroy.com

Why Simulate The Proposed PSS?

- An average of around 50 patients/day will need to do some of the following:
 - Register for the clinic
 - View a video orientation dvd
 - See a pharmacist
 - Give blood and urine samples
 - Change into a gown
 - Have EKG taken
 - See a GP or internist
 - Get dressed
 - Receive group training
 - Receive individual training
 - Submit insurance information

- Hospital management needs to determine:
 - The number of exam rooms
 - The number of nurses (and nurse training rooms)
 - The number of chairs in the waiting room

• • • •

- Complicating factors:
 - Randomness of time needed for each task for each patient
 - Randomness of tasks needed for each patient
 - Physicians don't want to wait between patients
 - Space in the hospital is limited
 - Would like to preclude or minimize overtime
 - Need to minimize patient overflow and dissatisfaction with long waits

•

- To understand the effect of randomness consider a PSS in which:
 - One patient arrives every 7.5 minutes needing to perform the tasks listed below
 - There are 6 exam rooms, 3 nurses, 2 registration staff, and 2 physicians
 - It takes exactly:
 - 15 minutes for patients to register and provide insurance info
 - 15 minutes for patients to watch their orientation video
 - 7.5 minutes for patients to get into their gown
 - 7.5 minutes for patients to have their EKG taken
 - 15 minutes for patients to be seen by a physician
 - 15 minutes for patients to get out of their gown
 - 30 minutes for groups of size 4 to be trained
 - 15 minutes for individual training

• The only waiting will be for the group and individual training

- Now consider the waiting in a PSS in which:
 - One patient arrives on average every 7.5 minutes needing to perform some tasks
 - There are 6 exam rooms, 3 nurses, 2 registration staff, and 2 physicians
 - On the average it takes:
 - 15 minutes for patients to register and provide insurance info
 - 15 minutes for patients to watch their orientation video
 - 7.5 minutes for patients to get into their gown
 - 7.5 minutes for patients to have their EKG taken
 - 15 minutes for patients to be seen by a physician
 - 15 minutes for patients to get out of their gown
 - 30 minutes for groups of size 4 to be trained
 - 15 minutes for individual training
 - It's likely that queues, possibly large, will occur at every step of the process

- Possible approaches to analyzing and making decisions for the PSS:
 - Spreadsheet or optimization software (e.g. Solver)
 - Queuing Theory
 - Monte Carlo Simulation Based Optimization (Using A Discrete Event Model)

What Is Monte Carlo Simulation (Using A Discrete Event Model)?

© Philip M. Troy, Ph.D., 2010

DrPhil@PhilTroy.com

- It can be thought of as being statistical experimentation
- It entails:
 - Building a model of the processes to be analyzed
 - Repeatedly running the model with different random inputs
 - Tabulating the results from the different runs to identify process statistics

- For this problem, we can think of simulation as a black box with:
 - Inputs on the top
 - Outputs on the bottom

- Inside the black box is a genie that repeats the following steps for many days:
 - Generates (pseudo) random patients for each day
 - Generates (pseudo) random times for each patient's tasks
 - Moves patients through the PSS in first come first served order using those times
 - Gives breaks and lunches to the staff
 - Keeps track of all the output measures

- Once working correctly, we can use the black box to try out different:
 - Staff levels
 - Number of exam rooms and waiting spots
 - Staff starting times
 - Patient arrival times (by patient need)

What Does It Mean To Use A Discrete Event Model?

- There is more than one approach to building Monte Carlo Simulation models
- Discrete Event (Simulation) Models are those that focus on events, e.g.:
 - Staff arrivals
 - Patient arrivals
 - Task completion times
 - Break completion times
 - Lunch completion times
- Many Discrete Event Simulation tools animate those events

What Is Monte Carlo Simulation Based Optimization

- Monte Carlo Simulation in only an analysis tool
- However it can be combined with optimization methods
- The basic concept is to:
 - Pick an initial set of values for the decision variables
 - Sample and summarize results of using those variables using simulation
 - Try a different set of parameters (in a structured manner)
 - Repeat previous two steps until no more improvement can be expected to be found

What Is Monte Carlo Simulation Based Optimization

- For the PSS
 - The decision variables we can change are the:
 - Number of exam rooms and waiting spots
 - Number of staff members
 - Staff and patient arrival times
 - The outputs we wish to measure and minimize include:
 - Physician wait time
 - Staff overtime
 - Excessive patient waiting time
 - Patient overflow

What are the Critical Components & Factors Needed For Successful Simulation Studies?

DrPhil@PhilTroy.com

Critical Components & Factors Needed For Successful Simulation Studies

- Understanding the organization's background, needs and culture
- Making sure there is a need for a simulation study
- Having a champion
- Access to data
- Good communication with stakeholders
- Good systems analysis
- An appropriate level of detail
- Making sure the simulation model is understood and accepted
- Careful statistical analysis of outputs
- Using the model to answer stakeholder questions

Pre-Surgical Screening Clinic Simulation Study

PSS Clinic Simulation Study

• Status

- Parameterized model is close to completion
- Has gone through preliminary validation
- Task time distribution data is being collected
- Optimization algorithm is being developed

Other Examples Of Hospital Process Simulation

. . .

Hospital Process Simulation Examples

- Robert B. Fetter, Yale University
- Brian Denton, North Carolina State University
- Franklin Dexter, University Of Iowa
- Martin Puterman, University of British Columbia
- Michael Carter, University of Toronto

Hospital Process Simulation At The JGH - ICU Surgical Bed Analysis

- Background
 - For many types of surgeries, patients need to go to ICU immediately after surgery
 - Some patients develops complications for which it is best for them to go to the ICU
 - Most hospitals in Canada use a single ICU for surgical and non-surgical purposes
 - Not unusual for procedures to be canceled for lack of available ICU bed
 - Surgery cancellations are:
 - Expensive in that they can result in lost revenue for the hospital & overtime
 - Very disruptive to patients' emotional health and surgeon schedules

Hospital Process Simulation At The JGH - ICU Surgical Bed Analysis

- Simulation study
 - Initial purpose of study was to determine the optimal number of beds; this didn't make sense as it required specifying cost of canceling/delaying surgeries
 - Instead built a simulation that analyzed tradeoff between:
 - # of ICU beds
 - Average patient delay for different types of surgeries requiring ICU beds
 - The amount of time that patients were sent to the PACU because the ICU was full
 - The utilization of the ICU beds
 - (Not unexpectedly) It was found that more beds led to:
 - Shorter delays
 - Smaller fractions of time in which patients were sent to the PACU
 - Possible next steps:
 - Looking at alternative approaches for mixing surgical and non-surgical ICU beds
 - Look at alternative operative procedure scheduling approaches for leveling demand

Hospital Process Simulation Examples - In Progress At The JGH

- Simulation model of complete set of peri-operative processes:
 - Initial patient visit with surgeon including surgeon surgery request
 - Pre-surgical screening
 - ED to OR patient flow
 - Scheduling
 - Surgery
 - Recovery in ICU
 - Recovery in surgical wards
- Goals:
 - Synchronize different processes so as to improve patient flow
 - Determine future capacity requirements

Hospital Process Simulation Examples - **In Progress At The JGH**

- Simulation model of the emergency department
- It would be very helpful if the two could be integrated

Hospital Process Simulation Examples - In Progress At Other Hospitals

- Current student projects:
 - Royal Victoria Reproductive Center
 - St. Justine's Laboratories

Acknowledgements

- Dr. Lawrence Rosenberg
- Dr. Nadia Lahrichi