

Scheduling of staff and patients for a Pre-Surgical Screening clinic

Dana Porubska, Nadia Lahrichi, Phil Troy and Lawrence Rosenberg

The Sir Mortimer B. Davis Jewish General Hospital

- A full service university affiliated medical center
 - Provides a broad range of inpatient and outpatient services
 - Has major tertiary & quaternary cardiovascular, neurosciences, oncology(including robotic surgery) and colo-rectal programmes
- 13,000- 15,000 operative procedures per year; this number is expected to grow at least 2% per year through 2015

A Simplified View Of The Peri-Operative Process

Patient
Is
Referred
To
Surgeon
By GP

Patient
Sees
Surgeon
In
Surgeon's
Office

Patient
Goes
Through
Screening
Process

Patient Undergoes Procedure At Hospital

Patient Recovers

Pre-Admission Testing Clinic Activities

- Patient logistical preparations (phone call)
 - When to arrive to the clinic
 - Expected wait time at the clinic
 - Information/Preparation on the day of the visit
- Administrative register and submit insurance information
- Medical
 - Perform Medical/Surgical History and obtain Physical Exam
 - In some cases adjust medications
 - Obtain ECG and other required tests
 - Refer all abnormal results to the Surgeon to perform follow ups

Existing Clinic Issues

- Not enough space:
 - Waiting area (wheelchair access)
 - Exam rooms, individual training rooms
 - Administrative work area
- Not enough staff (i.e. nurses and admin techs)
- Teaching provided to minimum number of patients (SDS only)
- Inefficient flow of patient and high wait time
- Inconsistent medication adjustments
- Dealing with abnormal results?
- Completing charts on-time and adequate follow-up

Analysis of the Existing Clinic

- Literature lack of comprehensive services increases post-op complications
- Analysis of existing clinic suggested that it should:
 - Include more services (ex: pharmacist, group teaching sessions)
 - Have adequate staffing (nurses, doctors)
 - Streamline patients
 - Screen and identify patients with infection precaution or allergies (ex. MRSA exposure, latex allergies)
 - Manage abnormal results
 - Complete charts at least 72 hours before the day of procedure

Pre-Surgical Screening Clinic Tasks

- Up to 35 patients/day will need to do some of the following:
 - Register for the clinic
 - Submit insurance information
 - Watch a DVD based video orientation at the start of visit
 - See pharmacist
 - Change into a gown
 - Have ECG taken
 - See GP
 - See Internist
 - Get dressed
 - Provide blood and urine samples
 - Receive group training
 - Receive individual training

Hôpital général juif

Jewish General Hospital

• Undergo X-rays test

Management Challenges

- Patients having differing needs
- Space requirements
- Staffing costs (including overtime costs)
- Physician idleness
- Excessive patient waiting

Complicating Factors

• Uncertainty of patient profile mix

• Uncertainty about times needed for each task

A few patients need to see pharmacist before seeing physician

No shows and cancellations

Making sure that staff get breaks and lunch

Management Decisions

- Scheduling:
 - Staff

Patients

Tool Set

- Discrete Event Simulation
- Optimization
- Simulation based optimization

Simulation Model Challenges

- Modelling entities as entities as opposed to resources (to facilitate decision making such as when a nurse could go home)
 - Physicians
 - Nurses
 - ECG Technicians

- Modelling activities involving different entities

 (i.e. coordination of multiple entities involved in the same activity)
 - Patients need to be in an exam room to change into their gown
 - Patients need to be in a gown before having their ECG taken

Simulation Modeling Approach

- Could have treated:
 - Patients as entities
 - Staff as resources
 - Exam rooms, DVD players, . . . as resources
- Wanted more flexibility for simulating staff
- Treated patients, staff and physical resources all as entities
- Visual display of model as a console of states for each entity type
- Simulation logic is used to handle
 - Events
 - Logic of entity flow

Simulation Model Animation

	\rightarrow	-	ŭ	PA Waits RN Call	PA RN Call	Ü	Ū					-	PA Waits IN Exam Room 0	
Patient	PA Needing Surgery 0		PA RN Chart Review 1	PA Waits 1st PSS Visit Call	PA Sets 1st PSS Visit	PA Waits 1st PSS Visit	PA Waits Register 1	PA Register 1	PA Waits DVD Player 0	PA DVD Player 0	PA Waits PH 0	PA Pharmacist 0	PA Waits GP Exam Room	PA Into Exam Room 0
DVD Player		DVD Player Idle 12				DVD Player In Use 0								
Exam Room		Exam Room Idle 6				Exam Room In Use By GP 0	Exam Room In Use By IN 0							
Lab						Lab Processes Urine 0	Lab Processes Blood 0							
Internist	IN Not In PSS 1	IN Idle 0	IN In Bathroom 0	IN On Break 0	IN At Lunch	IN Seeing Patient 0								
General Practitioner	GP Not In PSS 2	GP Idle	GP In Bathroom 0	GP On Break 0	GP At Lunch 0	GP Seeing Patient 0								
Taker	PSS 0	1	Bathroom 0	Break 0	Lunch 0	Blood 0								
Blood	1 BT Not In	0 BT Idle	0 BT In	0 BT On	0 BT At	0 BT Taking								
EKG Technician	ET Not In PSS	ET Idle	ET In Bathroom	ET On Break	ET At Lunch	ET Taking EKG								

Simulation Model Data Requirements

Tasks needed for each patient profile

- Patient profile distribution
- Service time distributions

Count of tasks needing to be done each day

Actual Simulation Model Data

- Patient profiles
 - Guesstimates from subject matter experts in existing (PAT) clinic
- Service time distributions
 - Triangular distribution guesstimates from subject matter experts
 - Patient self-time studies (in progress)
- Count of tasks needing to be done each day
 - Use patient profiles and tasks associated with each profile

Simulation Model Miscellaneous Issues

- Needed to determine rooms allocated to each type of physician
 - Can not pool rooms when GP and Internist work at same time
 - For Internist
 - When alone allocate all of the rooms
 - When with GP, allocate 2 for each Internist

Validating The Simulation Model

- Was difficult
 - Plan for PSS is in flux
 - Incomplete data
- Received feedback from management
 - PSS Clinic Nursing Coordinator
 - The Chief Of Surgical Services
 - Associate Director Of Professional Services
- Tested against schedule with deterministic service times
- It was known that results were sensitive to service time distribution estimates which were at best guessimates

Optimization Issues

- Need to start day early to get everyone done by 21:00
- Certain staff had to arrive before other staff
- Breaks and lunches had to fit into 8 hour day

Optimization Problem – Objective Function

- Minimize sum of costs of:
 - Physician idle time
 - Staff overtime
 - Excessive patient waiting time

Optimization Problem - Constraints

- Subject to
 - Getting patients done by the end of the day (21:00)
 - Staff break and lunch times are respected
 - Both general practitioners work in the morning
 - The sole internist works in the afternoon
 - At least 8 people in group training sessions
 - Sending staff home at end of their shift if there is another staff member who can finish up for them

Optimization Algorithm

- Initially Optquest objective only included physician idle time
- To facilitate distribution, current using simple neighbourhood search
 - Set initial values for each arrival time variable
 - Set upper and lower bounds for each arrival time variable
 - Select initial time increment
 - Repeat forever
 - Loop through variables one at a time
 - Change variable positively and then negatively by time increment
 - If solution is feasible evaluate average of total simulated cost over a predetermined number of days
 - Keep if it is an improvement
 - Gradually decrease magnitude of time increment

Optimization Challenges

- Finishing all patients by 21:00
- Minimum group size of 8
- Sending staff home at end of their shift if there is another staff member who can finish up for them
- Determining what excessive patient waiting time is
- The internist in the afternoon

Best Decision Variable Values Found To Date

Depends on time distributions

• Using preliminary guesstimates (based on small study of existing PSS)

- Using guesstimates from ECG machine salesman
- Using slower dressing times

Optquest Solution

	Arrival time
Admission staff	07:00(2)
Clerk	08:00(4)
RN	08:20(1) 08:50(1) 09:20(1)
Pharmacist	07:30(1)
EKG technician	07:30(1)
Blood taker	08:00(1)
GP	08:00(1)
Internist	12:00(1)
Patients	07:00(35)

Newer Solution (Using Neighbourhood Search)

	Arrival time
Admission staff	06:15(1) 06:45(1)
Clerk	08:00(4)
RN	08:00(3)
Pharmacist	07:15(1)
EKG technician	07:30(1)
Blood taker	08:00(1)
GP	07:30(1) 07:45(1)
Internist	12:30(1)
GP Patients	06:00(3) 06:15(4) 06:30(6) 06:45(4) 07:00(2) 07:15(1) 07:30(3) 07:45(2)
Internist Patients Nurse Only Patients	10:00 AM(2), 10:15AM(2), 11:15 AM(1) 6:30AM(2), 6:45AM(2), 7:15AM(1)

To Do – Short Term

• Change definition of excessive patient waiting time

• Include staff break and lunch times as decision variables

Consider moving all three physicians to the morning

Multiple schedules to handle different patient profile mixes

To Do – Medium Term

- Improve quality of data possibly by using RTLS to track times
- Analyze data to try to identify correlation between task times for patients, possibly based on their age, preliminary surgeon evaluation,
- Revise list of decision variables using updated data

To Do – Longer Term

- Address changing patient profile mix
- Address no shows and cancellations
- Adapt for other clinics
- Adjust break and lunch schedule dynamically within day

